Interpolated local model fitting method for accurate and fast single-shot surface profiling.

نویسندگان

  • Tatsuya Yokota
  • Masashi Sugiyama
  • Hidemitsu Ogawa
  • Katsuichi Kitagawa
  • Kazuyoshi Suzuki
چکیده

The local model fitting (LMF) method is a useful single-shot surface profiling algorithm based on spatial carrier frequency fringe patterns. The measurement principle of the LMF method relies on the assumption that the target surface is locally flat. In this paper, we first analyze the measurement error of the LMF method caused by violation of the locally flat assumption. More specifically, we theoretically prove that the measurement error is zero at fringe intensity extrema in an interference pattern even when the locally flat assumption is violated. Based on this theoretical finding, we propose a new surface profiling method called the interpolated LMF (iLMF) algorithm, which is more accurate and computationally efficient than the original LMF method. The practical usefulness of the iLMF method is shown through experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-shot surface profiling by local model fitting.

A new surface profiling algorithm called the local model fitting (LMF) method is proposed. LMF is a single-shot method that employs only a single image, so it is fast and robust against vibration. LMF does not require a conventional assumption of smoothness of the target surface in a band-limit sense, but we instead assume that the target surface is locally constant. This enables us to recover ...

متن کامل

Improved algorithm for multiwavelength single-shot interferometric surface profiling: speeding up the multiwavelength-integrated local model fitting method by local information sharing.

The local model fitting (LMF) method is a single-shot interferometric surface profiling algorithm that possesses nondestructive, fast, accurate, and robust measurement capabilities. To extend the measurement range of LMF, extensions based on multiwavelength light sources such as the multiwavelength-matched LMF (MM-LMF) method and the multiwavelength-integrated LMF (MI-LMF) method were proposed ...

متن کامل

Automatic parameter optimization of the local model fitting method for single-shot surface profiling.

The local model fitting (LMF) method is a single-shot surface profiling algorithm. Its measurement principle is based on the assumption that the target surface to be profiled is locally flat, which enables us to utilize the information brought by nearby pixels in the single interference image for robust LMF. Given that the shape and size of the local area is appropriately determined, the LMF me...

متن کامل

Iteratively-reweighted local model fitting method for adaptive and accurate single-shot surface profiling.

The local model fitting (LMF) method is one of the useful single-shot surface profiling algorithms. The measurement principle of the LMF method relies on the assumption that the target surface is locally flat. Based on this assumption, the height of the surface at each pixel is estimated from pixel values in its vicinity. Therefore, we can estimate flat areas of the target surface precisely, wh...

متن کامل

Multiwavelength-integrated local model fitting method for interferometric surface profiling.

The local model fitting (LMF) method is a useful single-shot surface profiling algorithm that features fast measurement speed and robustness against vibration. However, the measurement range of the LMF method (i.e., measurable height difference between two neighboring pixels) is limited up to a quarter of the light source wavelength. To cope with this problem, the multiwavelength-matched LMF(MM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 48 18  شماره 

صفحات  -

تاریخ انتشار 2009